ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ПРАВИЛА ВЫПОЛНЕНИЯ ЧЕРТЕЖЕЙ ПРУЖИН

Издание официальное

межгосударственный

Единая система конструкторской документации

ПРАВИЛА ВЫПОЛНЕНИЯ ЧЕРТЕЖЕЙ ПРУЖИН

ГОСТ 2.401—68

СТАНДАРТ

Unified system for design documentation. Rules for making drawings of springs

Дата введения 01.01.71

Настоящий стандарт устанавливает условные изображения и правила выполнения чертежей пружин всех отраслей промышленности.

Стандарт соответствует СТ СЭВ 285—76 и СТ СЭВ 1185—78.

(Измененная редакция, Изм. № 1).

1. УСЛОВНЫЕ ИЗОБРАЖЕНИЯ ПРУЖИН НА СБОРОЧНЫХ ЧЕРТЕЖАХ

1.1. При вычерчивании вида винтовой цилиндрической или конической пружины витки изображают прямыми линиями, соединяющими соответствующие участки контуров.

В разрезе витки изображают прямыми линиями, соединяющими сечения (таблица, пп. 1—12). Допускается в разрезе изображать только сечения витков.

	Условное изображение		
Наименование пружины	на виде	в разрезе	с толщиной сечения на чертеже 2 мм и менее
1. Пружина сжатия из проволоки круглого сечения с неподжатыми и нешлифованными крайними витками			
2. Пружина сжатия с поджатыми по ³ / ₄ витка с каждого конца и шлифованными на ³ / ₄ окружности опорными поверхностями			

Издание официальное

Перепечатка воспрещена

© ИПК Издательство стандартов, 2002

		Условное изображен	ние
Наименование пружины	на виде	в разрезе	с толщиной сечения на чертеже 2 мм и менее
3. Пружина сжатия с поджатыми по одному витку с каждого конца и шлифованными на ³ / ₄ окружности опорными поверхностями			
4. Пружина сжатия с прямоугольным сечением витка с поджатыми по $^{3}/_{4}$ витка с каждого конца и шлифованными на $^{3}/_{4}$ окружности опорными поверхностями			
5. Пружина сжатия трехжильная с поджатыми по $^{3}/_{4}$ витка с каждого конца			
6. Пружина сжатия коническая из проволоки круглого сечения с поджатыми по ³ / ₄ витка с каждого конца и шлифованными на ³ / ₄ окружности, опорными поверхностями			
7. Пружина сжатия коническая (телескопическая) из заготовки прямоугольного сечения с шлифованными на ³ / ₄ окружности опорными поверхностями			

		Условное изображе	Продолжение
Наименование пружины	на виде	в разрезе	с толщиной сечения на чертеже 2 мм и менее
8. Пружина растяжения из проволоки круглого сечения с зацепами, открытыми с одной стороны и расположенными в одной плоскости			
9. Пружина растяжения из проволоки круглого сечения с зацепами, открытыми с противоложных сторон и расположенными в одной плоскости			
10. Пружина растяжения из проволоки круглого сечения с зацепами, расположенными под углом 90°			
11. Пружина кручения из проволоки круглого сечения с прямыми концами, расположенными под углом 90°			\\\\

	Условное изображение		
Наименование пружины	на виде	в разрезе	с толщиной сечения на чертеже 2 мм и менее
12. Пружина кручения с прямыми концами, расположенными вдоль оси пружины			
13. Пружина спиральная плоская с отогнутыми зацепами			
13а. Пружина ленточ- ная			
14. Пружина тарельча- тая с наклонными кром- ками			4
15. Пружина тарельча- тая с прямыми кромками			'
16. Пакет с последовательной схемой сборки тарельчатых пружин			

Havneyanayana yanguyun	Условное изображение		
Наименование пружины	на виде	в разрезе	с толщиной сечения на чертеже 2 мм и менее
17. Пакет с параллельной схемой сборки тарельчатых пружин			
18. Пружина изгиба пластинчатая			
18а. Торсион цилинд- рический	•		 0
18б. Торсион наборный			= 7 = =
19. Пружина изгиба пластинчатая многослойная (рессора), стянутая хомутом			
19а. Пружина изгиба пластинчатая многослойная (рессора)			
196. Пружина изгиба пластинчатая многослойная (рессора) с проушинами			

(Измененная редакция, Изм. № 3, 4).

- 1.2. При вычерчивании винтовой пружины с числом витков более четырех показывают с каждого конца пружины 1-2 витка, кроме опорных. Остальные витки не изображают, а проводят осевые линии через центры сечений витков по всей длине пружины (таблица, пп. 1-6 и 8-11).
- 1.3. Пружины на чертежах изображают с правой навивкой. При обусловленных направлениях торцовых моментов допускается изображать пружины с требуемым направлением навивки.
- 1.4. При вычерчивании пакета тарельчатых пружин с числом пружин более четырех с каждого конца изображают 2-3 пружины, а контур условно непоказанной части пакета сплошными тонкими линиями (таблица, п. 16).
- 1.5. Если диаметры проволоки и троса или толщина сечения материала на чертеже 2 мм и менее, то пружину изображают линиями толщиной 0,6-1,5 мм (таблица, пп. 1-18); многослойную пластинчатую пружину типа рессоры изображают по внешнему контуру пакета (таблица, п. 19).

2. ВЫПОЛНЕНИЕ РАБОЧИХ ЧЕРТЕЖЕЙ ПРУЖИН

2.1. Винтовые пружины сжатия и растяжения должны быть изображены с правым направлением навивки. Левое направление навивки должно быть указано в технических требованиях.

Пружины кручения должны быть изображены с требуемым направлением навивки.

(Измененная редакция, Изм. № 2).

2.2. На рабочем чертеже пружины с контролируемыми силовыми параметрами помещают диаграмму испытаний, на которой показывают зависимость нагрузки от деформации или деформации от нагрузки. Если заданным параметром является длина (высота) или деформация (линейная или угло-

вая), то указывают предельные отклонения нагрузки — силы или момента (черт. 1—3, 5—18). Если заданным параметром является нагрузка, то указывают предельные отклонения длины (высоты) или деформации (черт. 4).

На диаграмме испытаний для пружин растяжения с межвитковым давлением указывают величину силы предварительного напряжения F_{α} (черт. 10).

Если для характеристики пружины достаточно задать только один исходный и зависимый от него параметр (например, F_2 и S_2 ; φ_2 и M_2), то допускается диаграмму на чертеже не приводить, а указать эти параметры в технических требованиях.

(Измененная редакция, Изм. № 3).

- 2.3. Для спиральной плоской пружины с контролируемыми силовыми параметрами, кроме диаграммы, на чертеже помещают схему закрепления пружины с указанием размеров вала и барабана (черт. 15).
- 2.4. Для пакета тарельчатых пружин с контролируемыми силовыми параметрами на чертеже приводят, кроме диаграммы, схему расположения пружин в пакете.

Если в механизме используют одну тарельчатую пружину с контролируемыми силовыми параметрами, то диаграмму можно приводить и для одной пружины.

- 2.5. Для пластинчатой пружины с контролируемыми силовыми параметрами, кроме диаграммы, на чертеже приводят схему закрепления пружины и указывают размеры от точки приложения нагрузки до места закрепления (черт. 18).
- 2.6. Если у пружины контролируют две нагрузки, то предельные отклонения длины (высоты) пружины не устанавливают (черт. 2, 3, 5—8, 11).
- 2.7. На чертеже пружины указывают диаметр пружины (наружный или внутренний) с предельными отклонениями. Исходя из условий работы пружины, в технических требованиях допускается помещать указания о контроле либо по стержню $D_{\rm c}$, либо по гильзе $D_{\rm r}$, при этом предельные отклонения диаметра пружины не указывают (черт. 1-11).
- 2.8. На чертеже, при необходимости, указывают как справочные размеры величину силы F_3 , момента M_3 , деформации пружины осевой s_3 и угловой ϕ_3 , длину пружины при максимальной нагрузке l_3 , максимальное значение высоты пакета тарельчатых пружин L_3 или максимальное значение деформации пакета тарельчатых пружин $s_{n\,3}$, угла между зацепами α_3 , число оборотов барабана спиральной пружины ψ_3 , шаг пружины t, модуль сдвига G, модуль упругости E, максимальное напряжение при кручении τ_3 и при изгибе σ_3 .

На чертеже пружины со стандартизованным витком значения величин G, E, τ_3 , σ_3 , допускается не указывать, при этом в технических требованиях чертежа должна быть приведена ссылка на стандартизованный виток по соответствующему стандарту».

2.9. Сортамент материала пружины, полностью определяющий размеры и предельные отклонения поперечного сечения, указывают в графе «Материал» основной надписи чертежа.

Когда необходимо учитывать изменение формы и размеров сечения, на чертеже показывают форму и размеры сечения витка готовой пружины (черт. 5—7) и размер толщины тарельчатой пружины (черт. 16, 17).

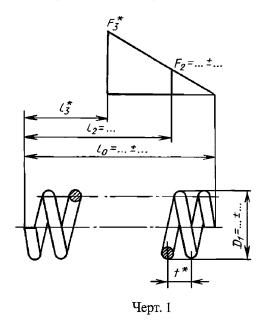
2.10. На чертеже пружины основные технические требования рекомендуется приводить в следующей последовательности записями по типу:

```
G^* = \dots M\Pi a
\tau_3^* = \dots M\Pi a
E^* = \dots M\Pi a
G_3^* = \dots M\Pi a
G_3^* = \dots M\Pi a
Пружина с витком, номер позиции по ГОСТ ...
Направление навивки пружины ...
Направление свивки троса ...
Число жил в тросе ...
n = \dots
n_1 = \dots
HRC_3 \dots
D_r = \dots MM
```

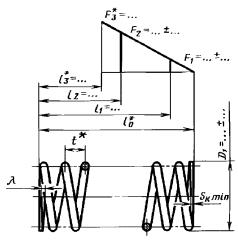
^{*} Размеры и параметры для справок.

 $D_{\rm c} = ...$ мм Остальные технические требования ...

Величину твердости указывают при необходимости только на чертеже пружины, подвергающейся после навивки термической обработке (закалке и отпуску).

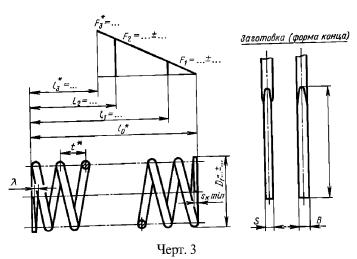

```
Допускается технические требования сводить в таблицу.
2.11. Для параметров пружин установлены следующие условные обозначения:
длина (высота) пружины в свободном состоянии — l_0;
высота пакета тарельчатых пружин в свободном состоянии — L_0;
длина пружины растяжения и кручения в свободном состоянии без зацепов — l_0';
длина (высота) пружины под нагрузкой — l_1, l_2, l_3;
высота пакета тарельчатых пружин под нагрузкой — L_1, L_2, L_3;
деформация (прогиб) пружины осевая — s_1, s_2, s_3;
деформация пакета тарельчатых пружин — s_{n,1}, s_{n,2}, s_{n,3};
деформация пружины угловая — \phi_1, \phi_2, \phi_3;
максимальная деформация одного витка пружины s_3;
диаметр проволоки или прутка — d;
диаметр троса — d_1;
диаметр пружины наружный — D_1;
диаметр пружины внутренний — D_2;
диаметр пружины средний — D;
диаметр пружины конической наружный малый — D_1';
диаметр контрольного стержня — D_c;
диаметр контрольной гильзы — D_{r};
длина развернутой пружины — l;
длина пластинчатой пружины в свободном состоянии -L;
зазор между концом опорного витка и соседним рабочим витком — \lambda;
момент силы — M_1, M_2, M_3;
напряжение касательное при кручении — \tau_1, \tau_2, \tau_3;
напряжение нормальное при изгибе — \sigma_1, \sigma_2, \sigma_3;
сила пружины — F_1, F_2, F_3;
сила предварительного напряжения — F_0;
сила пакета тарельчатых пружин — F_{\mathfrak{n}1}, F_{\mathfrak{n}2}, F_{\mathfrak{n}3};
толщина (высота) сечения — s;
толщина конца опорного витка — s_{\kappa};
угол между зацепами пружины кручения в свободном состоянии — \alpha_0;
угол между зацепами пружины кручения под нагрузкой — \alpha_1, \alpha_2, \alpha_3;
число рабочих витков или число тарельчатых пружин в пакете — n;
число витков полное или число витков спиральной пружины в свободном состоянии -n_1;
число оборотов барабана спиральной пружины \psi_1, \psi_2, \psi_3;
шаг пружины — t;
шаг троса — t_1;
рабочий ход пружины — h;
ширина сечения — B;
```

Примечание. Обозначения параметров l, s, ϕ , M, τ , σ , F, α , ψ с индексом 1 применяются для указания величин, соответствующих предварительной деформации, с индексом 2 — рабочей деформации и с индексом 3 — максимальной деформации пружины.

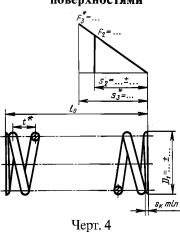

ширина опорной плоскости тарельчатой пружины — b.

2.12. Примеры изображения пружин на рабочих чертежах приведены на черт. 1—18. При выполнении рабочих чертежей пружин буквенные обозначения размеров на изображении заменяют числовыми величинами.

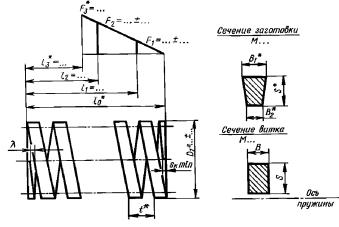
Пружина сжатия из проволоки круглого сечения с неподжатыми и нешлифованными опорными витками



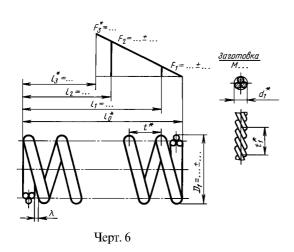
Пружина сжатия с поджатыми по ³/₄ витка с каждого конца и шлифованными на ³/₄ окружности опорными поверхностями

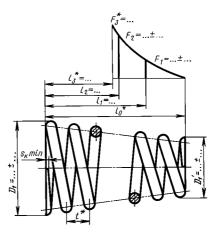


Черт. 2


Пружина сжатия с предварительно обработанными концами заготовки

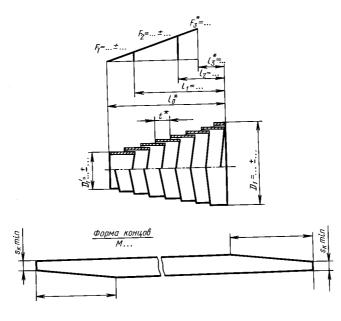
Пружина сжатия с поджатыми по одному витку с каждого конца и шлифованными на ³/₄ окружности опорными поверхностями




Пружина сжатия с прямоугольным сечением витка с поджатыми по $^3/_4$ витка с каждого конца и шлифованными на $^3/_4$ окружности опорными поверхностями

Черт. 5

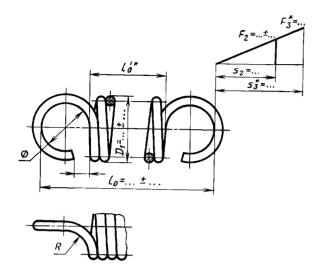
проволоки круглого сечения с поджатыми по $^{3}/_{4}$ витка с каждого конца и шлифованными Пружина сжатия трехжильная с поджатыми по $^{3}/_{4}$ витка с каждого конца и поверхностями поверхностями



Пружина сжатия коническая из

Черт. 7

Пружина сжатия коническая (телескопическая) из заготовки прямоугольного сечения с шлифованными на $^{3}/_{4}$ окружности опорными поверхностями

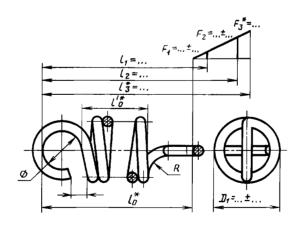


Черт. 8

С. 10 ГОСТ 2.401-68

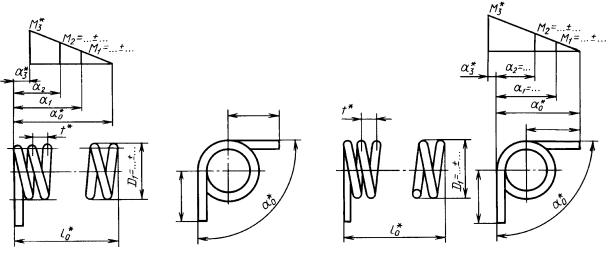
Пружина растяжения из проволоки круглого сечения с зацепами, открытыми с одной стороны и расположенными в одной плоскости

Пружина растяжения с межвитковым давлением из проволоки круглого сечения с зацепами, открытыми с противоположных сторон и расположенными в одной плоскости



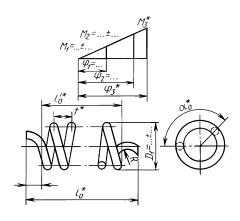
 $\begin{array}{c} \zeta_2 = \dots \\ \zeta_3 = \dots \\ \zeta_3 = \dots \\ \vdots \\ \zeta_0 = \dots \pm \dots \end{array}$

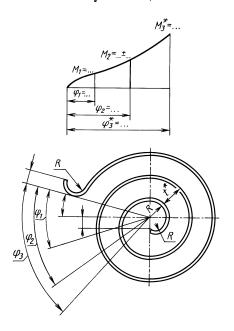
Черт. 9


Черт. 10

Пружина растяжения из проволоки круглого сечения с зацепами, расположенными под углом 90°

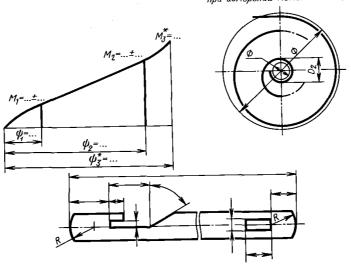
Черт. 11


Пружина кручения из проволоки круглого сечения с прямыми концами, расположенными под углом 90°


Черт. 12

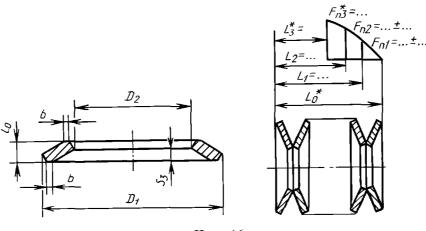
Пружина спиральная из заготовки прямоугольного сечения с отогнутыми зацепами

Пружина кручения с прямыми концами, расположенными вдоль оси пружины


Черт. 13

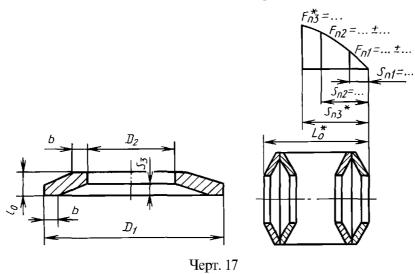
Черт. 14

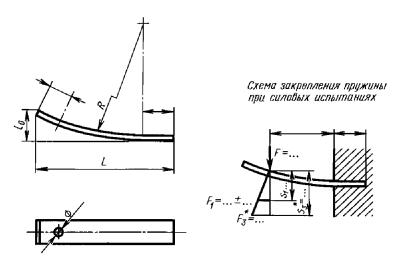
Пружина спиральная плоская из заготовки прямоугольного сечения с креплением на валу и к барабану


Схема закрепления пружины при измерении момента силы

Черт. 15

Пружина тарельчатая с наклонными кромками

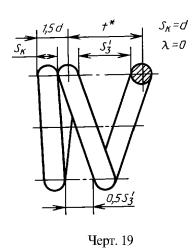

Схема расположения пружин в пакете при силовых испытаниях

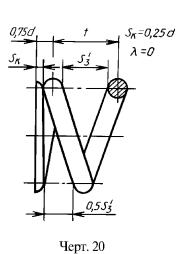

Черт. 16

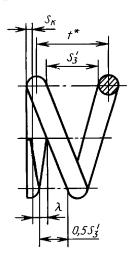
Пружина тарельчатая с прямыми кромками

Схема расположения пружин в пакете при силовых испытаниях

Пружина изгиба пластинчатая

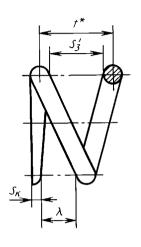

Черт. 18


2.13. Примеры построения опорных витков показаны на черт. 19—23.


Крайний виток пружины сжатия, полностью поджатый, нешлифованный Крайний виток пружины сжатия, полностью поджатый, зашлифованный на $^{3}/_{4}$ дуги окружности

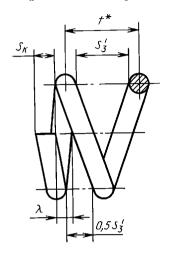
Крайний виток пружины сжатия, поджатый на $^3/_4$ и зашлифованный на $^3/_4$ дуги окружности

$$s_{\rm K} = 0.25 \ d, \ \lambda = 0.25 \ s_3$$



Черт. 21

C. 14 ΓΟCT 2.401-68


Крайний виток пружины сжатия, поджатый на $^{1}/_{2}$ и зашлифованный на $^{1}/_{2}$ дуги окружности $s_{\kappa}=0.5~d,$ $\lambda=0.5~s_{3}^{'}$

Черт. 22

Крайний виток пружины сжатия, поджатый на ³/₄ дуги окружности и нешлифованный

$$s_{\kappa} = d, \ \lambda = 0.25 \, s_3$$

Черт. 23

2.6—2.13. (Измененная редакция, Изм. № 3).

Редактор Р. Г. Говердовская Технический редактор О. Н. Власова Корректор С. И. Фирсова Компьютерная верстка А. П. Финогеновой

Изд. лиц. № 02354 от 14.07.2000. Подписано в печать 17.05.2002. Усл. печ. л. 1,86. Уч.-изд. л. 1,56. Тираж 215 экз. С 5878. Зак. 446.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР

РАЗРАБОТЧИКИ

- Я. Г. Старожилец, Ю. И. Степанов, В. Р. Верченко, Н. Т. Башкирова, Р. Ф. Рязанов
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 05.06.68 № 835

Изменение № 4 Принято Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 12—97 от 21 ноября 1997 г.)

За принятие проголосовали

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Белоруссия Республика Казакстан Киргизская Республика Республика Молдова Российская Федерация Республика Таджикистан Туркменистан Республика Узбекистан Украина	Азгосстандарт Армгосстандарт Госстандарт Белоруссии Госстандарт Республики Казахстан Киргизстандарт Молдовастандарт Госстандарт России Таджикгосстандарт Главная государственная инспекция Туркменистана Узгосстандарт Госстандарт

- 3. Стандарт полностью соответствует СТ СЭВ 285—76, СТ СЭВ 1185—78 и стандарту ИСО 2162 в части изображения пружин
- 4. ВЗАМЕН ГОСТ 3461-59 и ГОСТ 4444-60
- 5. ИЗДАНИЕ (март 2002 г.) с Изменениями № 1, 2, 3, 4, утвержденными в феврале 1980 г., марте 1981 г., июле 1990 г., мае 1998 г. (ИУС 4—80, 6—81, 11—90, 9—98)